Март 5, 2006
Ядро OLAP системы. Часть 1. Принципы построения
Алексей Стариков, BaseGroup Labs.
Механизм OLAP является на сегодня одним из популярных методов анализа данных. Есть два основных подхода к решению этой задачи. Первый из них называется Multidimensional OLAP (MOLAP) – реализация механизма при помощи многомерной базы данных на стороне сервера, а второй Relational OLAP (ROLAP) – построение кубов ‘на лету’ на основе SQL запросов к реляционной СУБД. Каждый из этих подходов имеет свои плюсы и минусы. Их сравнительный анализ выходит за рамки этой статьи. Мы же опишем нашу реализацию ядра настольного ROLAP модуля.
Такая задача возникла после применения ROLAP системы, построенной на основе компонентов Decision Cube, входящих в состав Borland Delphi. К сожалению, использование этого набора компонент показало низкую производительность на больших объемах данных. Остроту этой проблемы можно снизить, стараясь отсечь как можно больше данных перед подачей их для построения кубов. Но этого не всегда бывает достаточно.
В Интернете и прессе можно найти много информации об OLAP системах, но практически нигде не сказано о том, как это устроено внутри. Поэтому решение большинства проблем нам давалось методом проб и ошибок.
Схема работы
Общую схему работы настольной OLAP системы можно представить следующим образом:

- Получение данных в виде плоской таблицы или результата выполнения SQL запроса.
- Кэширование данных и преобразование их к многомерному кубу.
- Отображение построенного куба при помощи кросс-таблицы или диаграммы и т.п. В общем случае, к одному кубу может быть подключено произвольное количество отображений.
Рассмотрим как подобная система может быть устроена внутри. Начнем мы это с той стороны, которую можно посмотреть и пощупать, то есть с отображений.
Отображения, используемые в OLAP системах, чаще всего бывают двух видов – кросс-таблицы и диаграммы. Рассмотрим кросс-таблицу, которая является основным и наиболее распространенным способом отображения куба.
Кросс-таблица
На приведенном ниже рисунке, желтым цветом отображены строки и столбцы, содержащие агрегированные результаты, светло-серым цветом отмечены ячейки, в которые попадают факты и темно-серым ячейки, содержащие данные размерностей.


- На основании данных об измерениях определить координаты добавляемого элемента в матрице.
- Определить координаты столбцов и строк итогов, на которые влияет добавляемый элемент.
- Добавить элемент в матрицу и соответствующие столбцы и строки итогов.
При этом нужно отметить то, что полученная матрица будет сильно разреженной, почему ее организация в виде двумерного массива (вариант, лежащий на поверхности) не только нерациональна, но, скорее всего, и невозможна в связи с большой размерностью этой матрицы, для хранения которой не хватит никакого объема оперативной памяти. Например, если наш куб содержит информацию о продажах за один год, и если в нем будет всего 3 измерения – Клиенты (250), Продукты (500) и Дата (365), то мы получим матрицу фактов следующих размеров:

Подготовка данных
Данные, хранящиеся в таблице необходимо преобразовать для их использования. Так, в целях повышения производительности при построении гиперкуба, желательно находить уникальные элементы, хранящиеся в столбцах, являющихся измерениями куба. Кроме того, можно производить предварительное агрегирование фактов для записей, имеющих одинаковые значения размерностей. Как уже было сказано выше, для нас важны уникальные значения, имеющиеся в полях измерений. Тогда для их хранения можно предложить следующую структуру:

Библиотека компонентов CubeBase
Описанные выше идеи были положены в основу при создании библиотеки компонентов CubeBase.

Сравнение производительности
Данный набор компонент показал намного более высокое быстродействие, чем Decision Cube. Так на наборе из 45 тыс. записей компоненты Decision Cube потребовали 8 мин. на построение сводной таблицы. CubeBase осуществил загрузку данных за 7сек. и построение сводной таблицы за 4 сек. При тестировании на 700 тыс. записей Decision Cube мы не дождались отклика в течение 30 минут, после чего сняли задачу. CubeBase осуществил загрузку данных за 45 сек. и построение куба за 15 сек.
На объемах данных в тысячи записей CubeBase отрабатывал в десятки раз быстрее Decision Cube. На таблицах в сотни тысяч записей – в сотни раз быстрее. А высокая производительность – один из самых важных показателей OLAP систем.
2007-07-05 в 10:58
[…] предыдущей статье была рассмотрена архитектура и взаимодействие […]